Friday, October 14, 2022
Solution
We need to derive the composite function $u^3$, where $u=x^2-4$. Consequently, we need to use the chain derivative.
$f'(x)=[(x^2-4)^3]'$
$=3.(x^2-4)^2.(x^2-4)'$
$=3.(x^2-4)^2.2x$
$=6x.(x^2-4)^2$
Monday, October 10, 2022
List of Derivative Rules | All Derivative Rules
You can find all the derivative rules below. We wish everyone good work and good lessons...
Below is a list of all the derivative rules.
Constant Rule:
$f(x)=c$ then $f'(x)=0$
Constant Multiple Rule:
$g(x)=c.f(x)$ then $g'(x)=c.f'(x)$
Power Rule:
$f(x)=x^n$ then $f'(x)=nx^{n-1}$
Sum and Difference Rule:
$h(x)=f(x) ± g(x)$ then $h'(x)=f'(x) ± g'(x)$
Product Rule:
$h(x)=f(x).g(x)$ then $h'(x)=f'(x).g(x)+f(x).g'(x)$
Quotient Rule:
$h(x)=\frac{f(x)}{g(x)}$ then $h'(x)=\frac{f'(x).g(x)-f(x).g'(x)}{g(x)^2}$
Chain Rule:
$h(x)=f(g(x))$ then $h'(x)=f'(g(x)).g'(x)$
Trig Derivatives:
$f(x)=sin(x)$ then $f'(x)=cos(x)$
$f(x)=cos(x)$ then $f'(x)=-sin(x)$
$f(x)=tan(x)$ then $f'(x)=sec^2(x)$
$f(x)=sec(x)$ then $f'(x)=sec(x).tan(x)$
$f(x)=cot(x)$ then $f'(x)=-csc^2(x)$
$f(x)=csc(x)$ then $f'(x)=-csc(x).cot(x)$
Exponential Derivatives:
$f(x)=a^x$ then $f'(x)=ln(a).a^x$
$f(x)=e^x$ then $f'(x)=e^x$
$f(x)=a^{g(x)}$ then $f'(x)=ln(a).a^{g(x)}.g'(x)$
$f(x)=e^{g(x)}$ then $f'(x)=e^{g(x)}.g'(x)$
Logarithm Derivatives:
$f(x)=log_a(x)$ then $f'(x)=\frac{1}{ln(a).x}$
$f(x)=lnx$ then $f'(x)=\frac{1}{x}$
$f(x)=log_a(g(x))$ then $f'(x)=\frac{g'(x)}{ln(a).g(x)}$
$f(x)=ln(g(x))$ then $f'(x)=\frac{g'(x)}{g(x)}$
Thursday, October 6, 2022
arccot(x) integral | What is integrate of arccotx or cot^-1x?
by: Admin
No comments
categories: arccot integrate, arccotx integral, integral of arc cot(x), integral of cotx^-1

categories: arccot integrate, arccotx integral, integral of arc cot(x), integral of cotx^-1
Greetings dear friends. In this article, we will share with you what is the integrate of arccot(x).
![]() |
arccot integrate |
Integral of arccot(x) = $x.arccot(x)+\frac{1}{2}.ln(1+x^2)+C$
>>> $arccot(x)=cot^{-1}x$
>>> $\int arccot(x).dx=\int cot^{-1}x.dx$
>>> $\int arccot(x).dx=x.arccot(x)+\frac{1}{2}.ln(1+x^2)+C$
Tuesday, October 4, 2022
arctan(x) integral | What is integrate of arctanx or tan^-1x?
by: Admin
No comments
categories: arctan integrate, arctanx integral, integral of arc tan(x), integral of tanx^-1

categories: arctan integrate, arctanx integral, integral of arc tan(x), integral of tanx^-1
Greetings dear friends. In this article, we will share with you what is the integrate of arctan(x).
![]() |
arctan integrate |
Integral of arctan(x) = $x.arctan(x)-\frac{1}{2}.ln(1+x^2)+C$
>>> $arctan(x)=tan^{-1}x$
>>> $\int arctan(x).dx=\int tan^{-1}x.dx$
>>> $\int arctan(x).dx=x.arctan(x)-\frac{1}{2}.ln(1+x^2)+C$
Saturday, October 1, 2022
arccos(x) integral | What is integrate of arccosx or cos^-1x?
by: Admin
No comments
categories: arccos integrate, arcosx integral, integral of arc cos(x), integral of cosx^-1

categories: arccos integrate, arcosx integral, integral of arc cos(x), integral of cosx^-1
Thursday, September 29, 2022
arcsin(x) integral | What is integrate of arcsinx or sin^-1x?
by: Admin
No comments
categories: arcsin integrate, arsinx integral, integral of arc sin(x), integral of sinx^-1

categories: arcsin integrate, arsinx integral, integral of arc sin(x), integral of sinx^-1