Find the derivative of the function $f(x)=(x^2-4)^3$
Solution
We need to derive the composite function $u^3$, where $u=x^2-4$. Consequently, we need to use the chain derivative.
$f'(x)=[(x^2-4)^3]'$
$=3.(x^2-4)^2.(x^2-4)'$
$=3.(x^2-4)^2.2x$
$=6x.(x^2-4)^2$
0 comments:
Post a Comment