Hello everyone. You can reach derivative of $sec^{-1} x^2$ in this lesson. We wish you good work.
sec -1 derivative |
What is derivative of $sec^{-1} x^2$?
$Sec^{-1} u$ derivative formulas:
$\frac{d}{dx}sec^{-1} u=\frac{1}{|u|.\sqrt{u^2-1}}.\frac{du}{dx}$
Now let's answer our question.
Differentiate $y=sec^{-1} x^2$
Solution For $x^2$ > 1 > 0,
>>> $\frac{dy}{dx}=\frac{1}{|x|\sqrt{(x^2)^2-1}}.\frac{d}{dx}x^2$
>>> $=\frac{2x}{x^2\sqrt{x^4-1}}=\frac{2}{x.\sqrt{x^4-1}}$
Answer = $\frac{2}{x.\sqrt{x^4-1}}$