Tuesday, October 18, 2022

4-x^2 graph | What is the graph of $4-x^2$

   No comments     
categories: ,
You can reach 4-x^2 graph in the below.

Graph of $4-x^2$


$y=4-x^2$ graphics:

A parabola that opens down is said to be “concave down”. The point (0, 4) is known as the vertex.

Coordinate Points :

x,y = (0,4)
x,y = (1,3)
x,y = (-1,3)
x,y = (2,0)
x,y = (-2,0)
x,y = (3,-5)
x,y = (-3,-5)


graph of 4-x^2


$4-x^2$ graphic




We wish everyone good work.

Friday, October 14, 2022

What is the slope of the tangent of f(x) at the point =1 ?

   No comments     
categories: ,


$f(x)=(x^2-4)^3$

What is the slope of the tangent of f(x) at the point=1?


Solution:

Derivative of f(x):

$f'(x)=[(x^2-4)^3]'$

$=3.(x^2-4)^2.(x^2-4)'$

$=3.(x^2-4)^2.2x$

$=6x.(x^2-4)^2$

At point x=1, the slope of the tangent of the function f is

$f'(1)=6.(1).(1^2-4)^2=6(1).(-3)^2=54$

Derivative of $(x^2-4)^3$ | Find the derivative of the function $f(x)=(x^2-4)^3$




Find the derivative of the function $f(x)=(x^2-4)^3$


Solution


We need to derive the composite function $u^3$, where $u=x^2-4$. Consequently, we need to use the chain derivative.


$f'(x)=[(x^2-4)^3]'$

$=3.(x^2-4)^2.(x^2-4)'$

$=3.(x^2-4)^2.2x$

$=6x.(x^2-4)^2$

Monday, October 10, 2022

List of Derivative Rules | All Derivative Rules

You can find all the derivative rules below. We wish everyone good work and good lessons...




Below is a list of all the derivative rules.

Constant Rule:

$f(x)=c$ then $f'(x)=0$

Constant Multiple Rule:

$g(x)=c.f(x)$ then $g'(x)=c.f'(x)$

Power Rule:

$f(x)=x^n$ then $f'(x)=nx^{n-1}$

Sum and Difference Rule:

$h(x)=f(x) ± g(x)$ then $h'(x)=f'(x) ± g'(x)$

Product Rule:

$h(x)=f(x).g(x)$ then $h'(x)=f'(x).g(x)+f(x).g'(x)$

Quotient Rule:

$h(x)=\frac{f(x)}{g(x)}$ then $h'(x)=\frac{f'(x).g(x)-f(x).g'(x)}{g(x)^2}$

Chain Rule:

$h(x)=f(g(x))$ then $h'(x)=f'(g(x)).g'(x)$

Trig Derivatives:

$f(x)=sin(x)$ then $f'(x)=cos(x)$
$f(x)=cos(x)$ then $f'(x)=-sin(x)$
$f(x)=tan(x)$ then $f'(x)=sec^2(x)$
$f(x)=sec(x)$ then $f'(x)=sec(x).tan(x)$
$f(x)=cot(x)$ then $f'(x)=-csc^2(x)$
$f(x)=csc(x)$ then $f'(x)=-csc(x).cot(x)$

Exponential Derivatives:

$f(x)=a^x$ then $f'(x)=ln(a).a^x$
$f(x)=e^x$ then $f'(x)=e^x$
$f(x)=a^{g(x)}$ then $f'(x)=ln(a).a^{g(x)}.g'(x)$
$f(x)=e^{g(x)}$ then $f'(x)=e^{g(x)}.g'(x)$

Logarithm Derivatives:

$f(x)=log_a(x)$ then $f'(x)=\frac{1}{ln(a).x}$
$f(x)=lnx$ then $f'(x)=\frac{1}{x}$
$f(x)=log_a(g(x))$ then $f'(x)=\frac{g'(x)}{ln(a).g(x)}$
$f(x)=ln(g(x))$ then $f'(x)=\frac{g'(x)}{g(x)}$

Thursday, October 6, 2022

arccot(x) integral | What is integrate of arccotx or cot^-1x?

Greetings dear friends. In this article, we will share with you what is the integrate of arccot(x).



arccot integrate



Integral of arccot(x) = $x.arccot(x)+\frac{1}{2}.ln(1+x^2)+C$

>>> $arccot(x)=cot^{-1}x$

>>> $\int arccot(x).dx=\int cot^{-1}x.dx$

>>> $\int arccot(x).dx=x.arccot(x)+\frac{1}{2}.ln(1+x^2)+C$


Tuesday, October 4, 2022

arctan(x) integral | What is integrate of arctanx or tan^-1x?

Greetings dear friends. In this article, we will share with you what is the integrate of arctan(x).



arctan integrate



Integral of arctan(x) = $x.arctan(x)-\frac{1}{2}.ln(1+x^2)+C$

>>> $arctan(x)=tan^{-1}x$

>>> $\int arctan(x).dx=\int tan^{-1}x.dx$

>>> $\int arctan(x).dx=x.arctan(x)-\frac{1}{2}.ln(1+x^2)+C$


Saturday, October 1, 2022

arccos(x) integral | What is integrate of arccosx or cos^-1x?

 Greetings dear friends. In this article, we will share with you what is the integrate of arccos(x).



arccos integrate


Integral of arccos(x) = $x.arccos(x)-\sqrt{1-x^2}+C$

>>> $arccos(x)=cos^{-1}x$

>>> $\int arccos(x).dx=\int cos^{-1}x.dx$

>>> $\int arccos(x).dx=x.arccos(x)-\sqrt{1-x^2}+C$