You can find all the derivative rules below. We wish everyone good work and good lessons...
Below is a list of all the derivative rules.
Constant Rule:
f(x)=c then f'(x)=0
Constant Multiple Rule:
g(x)=c.f(x) then g'(x)=c.f'(x)
Power Rule:
f(x)=x^n then f'(x)=nx^{n-1}
Sum and Difference Rule:
h(x)=f(x) ± g(x) then h'(x)=f'(x) ± g'(x)
Product Rule:
h(x)=f(x).g(x) then h'(x)=f'(x).g(x)+f(x).g'(x)
Quotient Rule:
h(x)=\frac{f(x)}{g(x)} then h'(x)=\frac{f'(x).g(x)-f(x).g'(x)}{g(x)^2}
Chain Rule:
h(x)=f(g(x)) then h'(x)=f'(g(x)).g'(x)
Trig Derivatives:
f(x)=sin(x) then f'(x)=cos(x)
f(x)=cos(x) then f'(x)=-sin(x)
f(x)=tan(x) then f'(x)=sec^2(x)
f(x)=sec(x) then f'(x)=sec(x).tan(x)
f(x)=cot(x) then f'(x)=-csc^2(x)
f(x)=csc(x) then f'(x)=-csc(x).cot(x)
Exponential Derivatives:
f(x)=a^x then f'(x)=ln(a).a^x
f(x)=e^x then f'(x)=e^x
f(x)=a^{g(x)} then f'(x)=ln(a).a^{g(x)}.g'(x)
f(x)=e^{g(x)} then f'(x)=e^{g(x)}.g'(x)
Logarithm Derivatives:
f(x)=log_a(x) then f'(x)=\frac{1}{ln(a).x}
f(x)=lnx then f'(x)=\frac{1}{x}
f(x)=log_a(g(x)) then f'(x)=\frac{g'(x)}{ln(a).g(x)}
f(x)=ln(g(x)) then f'(x)=\frac{g'(x)}{g(x)}
0 comments:
Post a Comment