You can reach integral of sinx^5 answer on this page.
What is integral of ∫sinx^5dx?
integrate of sinx^5 |
Evaluate $\int sin^5{x}dx$.
Rewrite the function:
$\int sin^5{x}.dx=\int sinx.sin^4x.dx=\int sinx(sin^2x)^2.dx=\int sinx(1-cos^2x)^2.dx$
Now use u=cosx, du=-sinxdx:
$\int sinx(1-cos^2x)^2.dx=\int -(1-u^2)^2du=\int -(1-2u^2+u^4)du$
=$-u+\frac{2}{3}u^3-\frac{1}{5}u^5+C$
=$-cosx+\frac{2}{3}cos^3x-\frac{1}{5}cos^5x+C$
Answer:
$\int sin^5{x}.dx=-cosx+\frac{2}{3}cos^3x-\frac{1}{5}cos^5x+C$
0 comments:
Post a Comment