You can reach integral of (lnx^2)/x answer on this page.
What is integral of ∫lnx^2/xdx?
Question:
$\int \frac{lnx^2}{x}.dx=?$
![]() |
lnx^2/x integrate |
Solution:
Substituting u = lnx and $du = \frac{1}{x}dx$ , you get
$\int \frac{lnx^2}{x}dx=\int \frac{2lnx}{x}dx=2.\int u.du=2.\frac{1}{2}u^2+C = (lnx)^2+C$
$\int \frac{lnx^2}{x}.dx=(lnx)^2+C$
0 comments:
Post a Comment