Sunday, August 20, 2023
Sunday, November 27, 2022
$sec^{-1} x^2$ Derivative | What is derivative of sec x^2?
Hello everyone. You can reach derivative of $sec^{-1} x^2$ in this lesson. We wish you good work.
![]() |
sec -1 derivative |
What is derivative of $sec^{-1} x^2$?
$Sec^{-1} u$ derivative formulas:
$\frac{d}{dx}sec^{-1} u=\frac{1}{|u|.\sqrt{u^2-1}}.\frac{du}{dx}$
Now let's answer our question.
Differentiate $y=sec^{-1} x^2$
Solution For $x^2$ > 1 > 0,
>>> $\frac{dy}{dx}=\frac{1}{|x|\sqrt{(x^2)^2-1}}.\frac{d}{dx}x^2$
>>> $=\frac{2x}{x^2\sqrt{x^4-1}}=\frac{2}{x.\sqrt{x^4-1}}$
Answer = $\frac{2}{x.\sqrt{x^4-1}}$
Tuesday, October 18, 2022
4-x^2 graph | What is the graph of $4-x^2$
You can reach 4-x^2 graph in the below.
Graph of $4-x^2$
$y=4-x^2$ graphics:
A parabola that opens down is said to be “concave down”. The point (0, 4) is known as the vertex.
Coordinate Points :
x,y = (0,4)
x,y = (1,3)
x,y = (-1,3)
x,y = (2,0)
x,y = (-2,0)
x,y = (3,-5)
x,y = (-3,-5)
![]() |
graph of 4-x^2 |
![]() |
$4-x^2$ graphic |
We wish everyone good work.
Friday, October 14, 2022
What is the slope of the tangent of f(x) at the point =1 ?
$f(x)=(x^2-4)^3$
Solution:
Derivative of f(x):
$f'(x)=[(x^2-4)^3]'$
$=3.(x^2-4)^2.(x^2-4)'$
$=3.(x^2-4)^2.2x$
$=6x.(x^2-4)^2$
At point x=1, the slope of the tangent of the function f is
$f'(1)=6.(1).(1^2-4)^2=6(1).(-3)^2=54$
Derivative of $(x^2-4)^3$ | Find the derivative of the function $f(x)=(x^2-4)^3$
Solution
We need to derive the composite function $u^3$, where $u=x^2-4$. Consequently, we need to use the chain derivative.
$f'(x)=[(x^2-4)^3]'$
$=3.(x^2-4)^2.(x^2-4)'$
$=3.(x^2-4)^2.2x$
$=6x.(x^2-4)^2$
Monday, October 10, 2022
List of Derivative Rules | All Derivative Rules
You can find all the derivative rules below. We wish everyone good work and good lessons...
Below is a list of all the derivative rules.
Constant Rule:
$f(x)=c$ then $f'(x)=0$
Constant Multiple Rule:
$g(x)=c.f(x)$ then $g'(x)=c.f'(x)$
Power Rule:
$f(x)=x^n$ then $f'(x)=nx^{n-1}$
Sum and Difference Rule:
$h(x)=f(x) ± g(x)$ then $h'(x)=f'(x) ± g'(x)$
Product Rule:
$h(x)=f(x).g(x)$ then $h'(x)=f'(x).g(x)+f(x).g'(x)$
Quotient Rule:
$h(x)=\frac{f(x)}{g(x)}$ then $h'(x)=\frac{f'(x).g(x)-f(x).g'(x)}{g(x)^2}$
Chain Rule:
$h(x)=f(g(x))$ then $h'(x)=f'(g(x)).g'(x)$
Trig Derivatives:
$f(x)=sin(x)$ then $f'(x)=cos(x)$
$f(x)=cos(x)$ then $f'(x)=-sin(x)$
$f(x)=tan(x)$ then $f'(x)=sec^2(x)$
$f(x)=sec(x)$ then $f'(x)=sec(x).tan(x)$
$f(x)=cot(x)$ then $f'(x)=-csc^2(x)$
$f(x)=csc(x)$ then $f'(x)=-csc(x).cot(x)$
Exponential Derivatives:
$f(x)=a^x$ then $f'(x)=ln(a).a^x$
$f(x)=e^x$ then $f'(x)=e^x$
$f(x)=a^{g(x)}$ then $f'(x)=ln(a).a^{g(x)}.g'(x)$
$f(x)=e^{g(x)}$ then $f'(x)=e^{g(x)}.g'(x)$
Logarithm Derivatives:
$f(x)=log_a(x)$ then $f'(x)=\frac{1}{ln(a).x}$
$f(x)=lnx$ then $f'(x)=\frac{1}{x}$
$f(x)=log_a(g(x))$ then $f'(x)=\frac{g'(x)}{ln(a).g(x)}$
$f(x)=ln(g(x))$ then $f'(x)=\frac{g'(x)}{g(x)}$
Thursday, October 6, 2022
arccot(x) integral | What is integrate of arccotx or cot^-1x?
by: Admin
No comments
categories: arccot integrate, arccotx integral, integral of arc cot(x), integral of cotx^-1

categories: arccot integrate, arccotx integral, integral of arc cot(x), integral of cotx^-1
Greetings dear friends. In this article, we will share with you what is the integrate of arccot(x).
![]() |
arccot integrate |
Integral of arccot(x) = $x.arccot(x)+\frac{1}{2}.ln(1+x^2)+C$
>>> $arccot(x)=cot^{-1}x$
>>> $\int arccot(x).dx=\int cot^{-1}x.dx$
>>> $\int arccot(x).dx=x.arccot(x)+\frac{1}{2}.ln(1+x^2)+C$