Thursday, September 22, 2022
Graph of tangent | What is the tan(x) graph drawing?
Wednesday, September 21, 2022
$\int \frac{x^2+1}{x^2-1}dx=?$ | What is integral of (x^2+1)/(x^2-1)
You can reach integral of (x^2+1)/(x^2-1) answer on this page.
What is integral of $\int \frac{x^2+1}{x^2-1}dx$?
![]() |
integral of (x^2+1)/(x^2-1) |
Solution:
Performing polynomial long division, we have that:
$\int \frac{x^2+1}{x^2-1}dx=\int (1+\frac{2}{x^2-1})dx$
$=\int dx + \int \frac{2}{x^2-1}dx$
$=x+\int \frac{2}{x^2-1}dx$
Using partial fraction on the remaining integral, we get:
$\frac{2}{x^2-1}=\frac{A}{x-1}+\frac{B}{x+1}=\frac{A(x+1)+B(x-1)}{(x+1)(x-1)}=\frac{(A+B)x+(A-B)}{x^2-1}$
Thus, A + B = 0 and A − B = 2. Adding the two equations together yields 2.A = 2, that is, A = 1, and B = − 1. So, we have that:
$\int \frac{2}{x^2-1}dx=\int \frac{1}{x-1}dx-\int \frac{1}{x+1}dx$
Therefore,
$\int \frac{x^2+1}{x^2-1}dx=x+\int \frac{2}{x^2-1}dx$
$=x+\int \frac{1}{x-1}dx-\int \frac{1}{x+1}dx$
$=x+ln|x-1|-ln|x+1|+C$
Answer :
$\int \frac{x^2+1}{x^2-1}dx=x+ln|x-1|-ln|x+1|+C$
Tuesday, September 20, 2022
$\int \frac{1}{x\sqrt{x}}dx$ | What is integral of 1/x√x
$\int sin^5{x}dx=?$ | What is integral of sinx^5
You can reach integral of sinx^5 answer on this page.
What is integral of ∫sinx^5dx?
![]() |
integrate of sinx^5 |
Evaluate $\int sin^5{x}dx$.
Rewrite the function:
$\int sin^5{x}.dx=\int sinx.sin^4x.dx=\int sinx(sin^2x)^2.dx=\int sinx(1-cos^2x)^2.dx$
Now use u=cosx, du=-sinxdx:
$\int sinx(1-cos^2x)^2.dx=\int -(1-u^2)^2du=\int -(1-2u^2+u^4)du$
=$-u+\frac{2}{3}u^3-\frac{1}{5}u^5+C$
=$-cosx+\frac{2}{3}cos^3x-\frac{1}{5}cos^5x+C$
Answer:
$\int sin^5{x}.dx=-cosx+\frac{2}{3}cos^3x-\frac{1}{5}cos^5x+C$
Monday, September 19, 2022
$\int \frac{lnx^2}{x}.dx=?$ | What is integral of lnx^2/x?
You can reach integral of (lnx^2)/x answer on this page.
What is integral of ∫lnx^2/xdx?
Question:
$\int \frac{lnx^2}{x}.dx=?$
![]() |
lnx^2/x integrate |
Solution:
Substituting u = lnx and $du = \frac{1}{x}dx$ , you get
$\int \frac{lnx^2}{x}dx=\int \frac{2lnx}{x}dx=2.\int u.du=2.\frac{1}{2}u^2+C = (lnx)^2+C$
$\int \frac{lnx^2}{x}.dx=(lnx)^2+C$