In this math lesson, we will tell you what the integral of sin x 2 is. So what is the integral of sin(x)^2? What is the integral of sin(x) to the 2nd? You can see the proof and solution in our article. We wish you good integral solving in advance.

## $sin^2x$ Integral | Integral of Sin^{2}(x)

For the integral of sinx to the 2nd, we first need to write the expansion of sin^2(x).

**$sin^2x$ expansion(****transform-****conversion****):**

- $sin^2x=\frac{1-cos2x}{2}$

**Now let's move on to the step-by-step solution:**

**→ $sin^2x=\frac{1-cos2x}{2}=\frac{1}{2}-\frac{cos2x}{2}$**

**→ ****$\int{(\frac{1}{2}-\frac{cos2x}{2})dx}$**

**→ ****$\int{\frac{1}{2}dx}-\int{\frac{cos2x}{2}dx}$**

**→ ****$\frac{x}{2}-\frac{sin2x}{4}$**

** As a result, our answer is $\frac{x}{2}-\frac{sin2x}{4}$**. (Answer = x/2 - sin2x/4)

**Answer > ****$sin^2x$ integral**** =** $\frac{x}{2}-\frac{sin2x}{4}$

## 0 comments:

## Post a Comment