We wish everyone a good day. In this article, we will tell you the derivative of the cos(arcsinx) expression. We wish you good lessons in advance...
cos(arcsinx) derivative |
Derivative of cos(arcsinx)
First of all it is equal to cos(arcsinx)=cos(sinx^-1) . Here we will take the derivative.
👉 $\frac{d}{dx}cos(arcsinx)=\frac{d}{dx}cos(sin^{-1}x)$
👉 $\frac{d}{dx}cos(sin^{-1}x)=-sin(sin^{-1}x).\frac{1}{\sqrt{1-x^2}}$
👉 $-sin(sin^{-1}x).\frac{1}{\sqrt{1-x^2}}=\frac{-x}{\sqrt{1-x^2}}$
Answer : $\frac{-x}{\sqrt{1-x^2}}$