We wish everyone a good day. In this article, we will tell you the derivative of the cos(arcsinx) expression. We wish you good lessons in advance...

cos(arcsinx) derivative |

**Derivative of cos(arcsinx)**

First of all it is equal to cos(arcsinx)=cos(sinx^-1) . Here we will take the derivative.

ðŸ‘‰ $\frac{d}{dx}cos(arcsinx)=\frac{d}{dx}cos(sin^{-1}x)$

ðŸ‘‰ $\frac{d}{dx}cos(sin^{-1}x)=-sin(sin^{-1}x).\frac{1}{\sqrt{1-x^2}}$

ðŸ‘‰ $-sin(sin^{-1}x).\frac{1}{\sqrt{1-x^2}}=\frac{-x}{\sqrt{1-x^2}}$

**Answer :**$\frac{-x}{\sqrt{1-x^2}}$

## 0 comments:

## Post a Comment