Wednesday, January 19, 2022

cos(arcsinx) derivative | What is derivative of d/dx cos(arcsinx)?

We wish everyone a good day. In this article, we will tell you the derivative of the cos(arcsinx) expression. We wish you good lessons in advance...

cos(arcsinx) derivative

Derivative of cos(arcsinx)

First of all it is equal to cos(arcsinx)=cos(sinx^-1) . Here we will take the derivative.

👉 $\frac{d}{dx}cos(arcsinx)=\frac{d}{dx}cos(sin^{-1}x)$

👉 $\frac{d}{dx}cos(sin^{-1}x)=-sin(sin^{-1}x).\frac{1}{\sqrt{1-x^2}}$

👉 $-sin(sin^{-1}x).\frac{1}{\sqrt{1-x^2}}=\frac{-x}{\sqrt{1-x^2}}$

Answer : $\frac{-x}{\sqrt{1-x^2}}$


Post a Comment